free azido-dithiocarbonic acid against standard alkali, with methyl red as indicator; (2) gravimetric determination as silver azido-dithiocarbonate, or as silver chloride; (3) titration with standard silver nitrate solution after the method of either Gay-Lussac or Volhard; (4) titration with standard alcoholic iodine.

Of these, the Volhard method is the one adjudged best for use under ordinary circumstances.

ITHACA, NEW YORK

[CONTRIBUTION FROM THE HAVEMEYER CHEMICAL LABORATORY, NEW YORK UNIVERSITY]

# TERNARY SYSTEMS. III. SILVER PERCHLORATE, TOLUENE AND WATER

BY ARTHUR E. HILL AND FREDERICK W. MILLER, JR.<sup>1</sup> Received July 28, 1925 Published November 5, 1925

Silver perchlorate, toluene and water give rise to equilibria resembling in many respects those found in the case of the same salt with benzene and water.<sup>2</sup> These resemblances include the formation of a single molecular compound between silver perchlorate and the organic component, Ag- $ClO_4$ .  $C_7H_8$ ; further, systems consisting of three co-existent liquid phases occur, in this instance over a much wider temperature range; and finally, there is a clearly indicated submerged binodal curve for two liquid phases composed of the three components which fails to appear in any of the three 2-component systems.

## The Binary System; Silver Perchlorate and Toluene

The ternary system under investigation may be regarded as made up from the three binary systems which can be derived from the three components. Silver perchlorate and water have previously been investigated.<sup>2</sup> Water and toluene proved to be a difficult system to study because of the extremely low mutual solubility of these substances; the only new information as to this pair is the fact that the solubility of water in toluene is too low to be measured by the delicate method described later in this paper and is therefore not more than a few hundredths of a per cent., markedly lower than the value of 0.07% found for water in benzene<sup>3</sup> at  $25^{\circ}$ . The third pair, however, has been studied over the temperature range  $-73.5^{\circ}$  to  $+75^{\circ}$ .

The silver perchlorate used was prepared from silver nitrate, from which hydrous silver oxide was precipitated by sodium hydroxide and dissolved in 60% perchloric acid.

Vol. 47

<sup>&</sup>lt;sup>1</sup> The material of this paper was presented by Frederick W. Miller, Jr., in partial fulfilment of the requirements for the degree of Doctor of Philosophy at New York University, June, 1923.

<sup>&</sup>lt;sup>2</sup> Hill, This Journal, 44, 1163 (1922).

<sup>&</sup>lt;sup>8</sup> Hill, ibid., 45, 1143 (1923).

The salt obtained by partial evaporation of the solution above  $50^{\circ}$  was centrifuged and dried continuously in an oven at  $110^{\circ}$ ; analysis of various samples gave results close to 100%. The toluene was purified by repeated shaking with concd. sulfuric acid, washed with water and dried with calcium chloride. Its boiling point was constant within  $0.15^{\circ}$ ; it was stored over metallic sodium to keep it anhydrous. For the solubility determinations, the salt and toluene in glass-stoppered flasks were tumbled in a thermostat at various temperatures from  $0^{\circ}$  to  $75^{\circ}$ ; the thermometers used were compared with a standard and corrected. For the lower temperatures, hand stirring in tubes immersed in coolingbaths was used. Samples of saturated solution were removed by a pipet and weighed so that the density could be calculated; they were then diluted with water and titrated with thiocyanate by the Volhard method for the determination of silver. At lower temperatures the solid phase appearing is the compound AgClO<sub>4</sub>.C<sub>7</sub>H<sub>8</sub>; this was filtered off on a cooled Büchner funnel and gave upon analysis a silver content in close agreement with the above formula, representing 69.24% of silver perchlorate. Its transition temperature,  $22.6^{\circ}$ , was established by means of a cooling curve.



The results of the solubility determinations are given in Table I and shown in Fig. 1. Since the solubility of the salt diminishes very rapidly at lower temperatures, being too small for detection at  $-73.5^{\circ}$ , it is probable that the eutectic is only slightly below the freezing point of toluene, given as about  $-94^{\circ}$ .

The high solubility of silver perchlorate (about 50% at room temperature) is without parallel for salts in hydrocarbon solvents and is of the same order of magnitude as that of the alkali metal salts in the alcohols. It stands in a class by itself as an example of high solubility of a highly polar compound in a non-polar solvent, notwithstanding its moderately high melting point,<sup>4</sup> 480°.

<sup>4</sup> Carnelley, J. Chem. Soc., 45, 409 (1884).

TABLE I

| Solubility of Silver Perchlorate in Toluene |                                                   |                        |                    |  |  |
|---------------------------------------------|---------------------------------------------------|------------------------|--------------------|--|--|
| Temp., ° C.                                 | Solid phase<br>present                            | Density of<br>solution | AgClO. %<br>by wt. |  |  |
| 75                                          | AgClO <sub>4</sub>                                | 1.665                  | 54.60              |  |  |
| 50                                          | AgClO <sub>4</sub>                                | 1.576                  | 52.68              |  |  |
| 25                                          | AgClO <sub>4</sub>                                | 1.523                  | 50.30              |  |  |
| 22.6                                        | $AgClO_4 + AgClO_4 C_7H_8$                        | • • •                  |                    |  |  |
| 18                                          | $AgClO_4.C_7H_8$                                  | 1.417                  | 44.11              |  |  |
| 16.5                                        | AgClO <sub>4</sub> .C <sub>7</sub> H <sub>8</sub> | 1.388                  | 42.89              |  |  |
| 16                                          | AgClO <sub>4</sub> .C <sub>7</sub> H <sub>8</sub> | 1.375                  | 42.00              |  |  |
| 0                                           | AgClO <sub>4</sub> .C <sub>7</sub> H <sub>8</sub> | 1.129                  | 26.41              |  |  |
| -24.1                                       | $AgClO_4.C_7H_8$                                  | 0.920                  | 6.01               |  |  |
| -73.5                                       | AgClO <sub>4</sub> .C <sub>7</sub> H <sub>8</sub> | .854                   | 0.00               |  |  |

### The Ternary System

The data on the ternary system consist of a number of invariant temperatures, determined by the method of cooling curves, and a number of analyses of the liquid ternary solutions, brought to saturation at fixed temperatures in a thermostat or in baths under thermometric control. Saturation was easily attained, since in no case was more than an hour's agitation found to be necessary, and usually 20 minutes of vigorous stirring proved sufficient. For the analysis, the percentage composition with



respect to two of the three components is necessary, and only one (silver perchlorate by Volhard's method) could be obtained directly. The percentage of water present was therefore determined by the following indirect procedure. Carefully weighed quantities of toluene and water (the latter in small amounts) were introduced into well-dried, glass-stoppered tubes, treated with an excess of anhydrous silver perchlorate and agitated at 25° to sat-

uration. Pipetted samples were then analyzed for silver perchlorate. Since the solid phase at  $25^{\circ}$  is the salt uncombined either with toluene, as previously shown, or with water if its total amount is small as is shown later in Fig. 2, it follows that the toluene and water are present in the ternary liquid in the same ratio as originally weighed out. From this experimentation Table II was compiled, which shows that the solubility of the perchlorate rises markedly with the presence of water in the system, although not to so great an extent as when benzene is the organic component.<sup>5</sup> It is possible, therefore, to use the solubility of the per-

<sup>5</sup> Ref. 3, p. 1152.

chlorate in the solution at  $25^{\circ}$  as a measure of the water content. For the purposes both of accuracy and of ease, the data of Cols. 2 and 4 were plotted and the best straight-line equation was calculated by the method of least squares. The equation is found to be y = 50.44 + 3.188 x, where y is the percentage of silver perchlorate and x the percentage of water. The values thus calculated are given in Col. 5 and are in good agreement with Col. 4.

TART T

|                     |                     | IAD                  |                               |                                |          |
|---------------------|---------------------|----------------------|-------------------------------|--------------------------------|----------|
| Solu                | BILITY OF SILV      | VER PERCHLORA        | TE IN TOLUE                   | NE AND WATER                   | r at 25° |
| Points in<br>Fig. 2 | AgClO4, %<br>by wt. | Toluene, %<br>by wt. | Water, %<br>by wt.<br>(found) | Water, %<br>by wt.<br>(calcd.) | Density  |
| e                   | 56.66               | 41.42                | 1.92                          | 1.95                           | 1.675    |
|                     | 56.65               | 41.46                | 1.89                          | 1.949                          | 1.672    |
|                     | 54.92               | 43.66                | 1.42                          | 1.40                           | 1.639    |
|                     | 54.75               | 43.84                | 1.41                          | 1.35                           | 1.628    |
|                     | 53.49               | 45.49                | 1.02                          | 0.96                           | 1.606    |
|                     | 52.54               | 46.86                | 0.60                          | .66                            | 1.580    |
| f                   | 50.30               | $49.70^{\circ}$      | .00                           | ••                             | 1.525    |
|                     |                     |                      |                               |                                |          |

In order to analyze any liquid phase formed at any temperature and with any solid phase present, it was necessary only to bring a known weight of the liquid to 25°, add salt, toluene or water in known amount, if necessary, to bring the system within the concentration limits given in Table II, and analyze again for silver perchlorate after the new equilibrium was obtained, calculating the water present from the equation given above and calculating the toluene in the original liquid by subtracting the sum of salt and water from 100%. It was by this method that the practical absence of water from toluene shaken with water was shown, as stated earlier. When the water content was high, a similar method was adopted using the segment *de* of Fig. 2, where the hydrate  $AgClO_4$ .  $H_2O$  is the solid phase. The ternary system has been studied from temperatures not far above the ternary eutectic up to 99°. The 25° isotherm will first be given in detail, followed by an outline of the various equilibria found to exist from the lowest temperatures to the highest studied.

The 25° isotherm is shown in Fig. 2, which is not drawn exactly to scale because of the low concentration of water and toluene found in the liquid phases. The solubility curve shows three divisions, *ef*, *ed* and *cb*, for the first of which the saturating phase is AgClO<sub>4</sub> and for the latter two of which the hydrate AgClO<sub>4</sub>. H<sub>2</sub>O is the solid phase. The data for the segment *ef* have been given above in Table II. In Table III are given the analyses of the saturated solutions along *ed*; for this curve the equation was found to be  $y = 57.877 - 1.2281x + 0.3075x^2$ . In the table, S is used for the salt silver perchlorate in solution, T for toluene and W for water.

The point e is common to both segments of the solubility curve, representing the composition of the liquid phase in equilibrium with AgClO<sub>4</sub> and

TABLE III

| Solubility          | OF SILVER      | PERCHLORATE    | MONOHYDRATE,  | AgClO <sub>4</sub> .H <sub>2</sub> O, | IN TOLUENE ANI |
|---------------------|----------------|----------------|---------------|---------------------------------------|----------------|
|                     |                | W              | ATER AT 25°   | •                                     |                |
| Points in<br>Fig. 2 | S, %<br>by wt. | T, %<br>by wt. | W, %<br>found | W, %<br>calcd.                        | Density        |
| d                   | 58.34          | 37.32          | 4.19          | 4.34                                  | 1.715          |
|                     | 58.11          | 37.7 <b>2</b>  | 4.16          | 4.17                                  | 1.709          |
|                     | 57.96          | 37.98          | 4, 12         | 4.06                                  | 1.710          |
|                     | 57. <b>5</b> 6 | 38.72          | 3.86          | 3.72                                  | 1.702          |
|                     | 57.44          | 38.96          | 3.67          | 3.60                                  | 1.696          |
|                     | 56.95          | 40.07          | 2.86          | 2.98                                  |                |
| e                   | 56.66          | 41.51          | 1.92          | 1.83                                  | 1.675          |

with AgClO<sub>4</sub>. H<sub>2</sub>O; the experimental data in Tables III and II are in close agreement with the intersection of the two curves as calculated from the equations, which give 56.66% for the concentration of silver perchlorate and 1.95% for the concentration of water. The segment *cb* is very short and the solubility of silver perchlorate at *c* is close to that in pure water, as is shown later in Table VI, Equilibrium 15. The discontinuous solubility curve gives rise to two 4-phase equilibria (isothermally invariant); these are Equilibrium 18, which exists between solid silver perchlorate, solid AgClO<sub>4</sub>. H<sub>2</sub>O, solution and vapor and Equilibrium 15, existing between solid AgClO<sub>4</sub>. H<sub>2</sub>O vapor and two liquid phases designated by  $L_2$ and  $L_1$ . The data for these equilibria are given in Table VI.

In addition to the solubility curve, the  $25^{\circ}$  isotherm shows two binodal or distribution curves; of these WcdT is the curve for the mutual solubility of toluene and water as affected by the presence of silver perchlorate. The data are given in Table IV. The figures in parentheses were obtained by graphic interpolation. The number of interpolated figures is not small, but this method was used here and in Table VI only when the amount of toluene or water was shown to be very small and to vary but little under change of conditions, so that the estimate cannot be in any substantial error.

| - · ·                  |                            | L              | L              |         | <b>m</b> . / / |                | $L_2$          |                |         |
|------------------------|----------------------------|----------------|----------------|---------|----------------|----------------|----------------|----------------|---------|
| Points<br>in<br>Fig. 2 | S. %<br>by <del>w</del> t. | T. %<br>by wt. | W, %<br>by wt. | Density | Fig. 2         | S. %<br>by wt. | T. %<br>by wt. | W, %<br>by wt. | Density |
| T                      | 0.00                       | 100.00         | 0.00           | 0.854   | W              | 33.34          | 0.00           | 66.64          | 1.344   |
|                        | .00                        | 100.00         | .00            | .850    |                | 39.37          | 0.00           | 60.03          | 1.436   |
|                        | .00                        | 100.00         | .00            | .852    |                | 55.21          | 1.59           | 43.20          | 1.730   |
| i                      | 7.37                       | 92.48          | . 19           | .914    | a              | 75.57          | (2.1)          | (22.33)        | 2.360   |
| g                      | 39.35                      | 56.93          | 3.70           | 1.307   | a              | 75.57          | (2.1)          | (22.33)        | 2.360   |
|                        | 43.44                      | 52.01          | 4.55           | 1.372   |                | 76.09          | (2.2)          | (21.71)        | 2.389   |
|                        | 45.88                      | 49.65          | 4.77           | 1.442   |                | 76.28          | (2.25)         | (21.47)        | 2.421   |
|                        | 49.07                      | 45.98          | 4.95           | 1.491   |                | 78.00          | (2.4)          | (20.60)        | 2.480   |
|                        | 54.08                      | 40.47          | 5.45           | 1.574   |                | 80.64          | (2.45)         | (16.91)        | •• •    |
| d                      | 58.34                      | 37.32          | 4.34           | 1.715   | C              | 84.29          | 2.52           | 13.1 <b>9</b>  | 2.830   |

TABLE IV

BINODAL CURVE WedT AT 25° CONJUGATE SOLUTIONS

The binodal curve portrayed above shows two peculiarities of considerable theoretical interest: these are, first, the abnormal distribution of silver perchlorate between the toluene phase and the water phase and, second, the interruption by a submerged binodal curve gi, giving rise to a 3-liquid system (Equilibrium 14). With respect to the abnormal distribution, it will be seen in Table IV that the salt is found wholly in the aqueous phase  $(L_2)$  up to high concentrations; the aqueous solution contains as much as 55% of silver perchlorate when none of the salt can be detected in the toluene phase. A similar one-sided distribution of the strong electrolyte between water and benzene has been discussed in an earlier publication;<sup>6</sup> in the case now reported, however, the anomaly is more striking inasmuch as the solubility of the salt in toluene is so much nearer (50.3%, Table I) to that in water  $(84.5\%)^3$  than in the case of benzene, where it is only 5.0%.<sup>3</sup> It is possible to regard the distribution in these cases as evidence for the complete dissociation of an electrolyte at high concentrations, and from that point of view the evidence in this newer case is much more convincing, as was pointed out by Kendall,<sup>7</sup> because of the much smaller solubility ratio. It is evident, however, that these instances require a more detailed explanation than is afforded by the simple hypothesis of complete dissociation, since it has been found that the same salt, when distributed between water and aniline, is found wholly in the organic phase,<sup>8</sup> a fact in complete disagreement with the theory. Compound formation and chemical affinities obviously cannot be disregarded in these cases, and it is probable that they play a large part in all cases of distribution.

The second peculiarity noted is the occurrence of the submerged binodal curve ghi, which fails to reach the toluene-salt axis at any temperature. The data at 25° are given in Table V; the figures in parentheses are interpolated.

| TABLE | v |
|-------|---|
|-------|---|

BINODAL CURVE ghi AT 25° CONJUGATE SOLUTIONS

| D-!-++                 |                | Ls                         |                | · .     | Delete                   | $L_1$          |                |         |
|------------------------|----------------|----------------------------|----------------|---------|--------------------------|----------------|----------------|---------|
| Points<br>in<br>Fig. 2 | S, %<br>by wt. | T, %<br>by <del>w</del> t. | W, %<br>by wt. | Density | in S, %<br>Fig. 2 by wt. | Τ, %<br>by wt. | W, %<br>by wt. | Density |
| i                      | 7.37           | 92.48                      | 0.19           | 0.914   | g 39.35                  | 56 <b>.9</b> 5 | 3.70           | 1.307   |
|                        | 8.97           | 91.73                      | .30            | . 930   | 36.26                    | 60.69          | 3.05           | 1.261   |
|                        | 11.00          | 88.64                      | .36            | .951    | 32.18                    | 65.54          | 2.28           | 1.210   |
|                        | 16.04          | 83.17                      | .79            | 1.005   | 26.67                    | 71.73          | 1,60           |         |
| h                      | (21)           | (77.9)                     | (1.1)          |         | h(21)                    | (77.9)         | (1.1)          | • • •   |

The curve is found, upon plotting to scale, to have but slight displacement from the tie-line gi throughout and to lie very close to the salt-

<sup>6</sup> Hill, This Journal, 43, 254 (1921).

<sup>7</sup> Kendall, *ibid.*, **44**, 734 (1922).

<sup>8</sup> Hill and Macy, *ibid.*, 46, 1140 (1924).

Vol. 47

toluene axis ST; the water content is very small, being less than 0.2%at the point *i*. As shown in a previous paper,<sup>9</sup> it is possible to forecast the occurrence of a submerged binodal curve on addition of a third component when the 2-component system (here silver perchlorate and toluene) shows a steep solubility curve approaching a parallel to the solubility axis, which if actually reached always results in the formation of a second liquid phase in the 2-component system; it is, however, not probable at all that a random choice of the third component will always result in the formation of the closed binodal curve, but we are not yet in position to generalize as to the nature of the third component necessary for such an occurrence.

The binodal curve ghi has one of its plait points, h, in the stable area; the other would fall in the metastable area within the binodal curve WcdT. The crossing of these two binodal curves gives rise to a 3-liquid area, gai, within which three liquid phases are co-existent. A similar case was noted for the system: silver perchlorate-benzene-water. These two instances appear to be the only cases known where three co-existent liquids are found in systems containing only two binodal curves. Schreinemakers<sup>10</sup> has predicted the possibility of such systems. As a matter of fact, they will occur in every instance where the merging of two binodal curves, with rise or fall of temperature, occurs at any points upon the curves except at the two plait points; in the latter case only two liquids will result. The occurrence of three co-existing liquids from the merging of three binodal curves<sup>11</sup> has been much more frequently observed.

The complete investigation of the ternary system has given seven invariant 5-phase points, designated by the Roman letters A to G, and twenty 4-phase equilibria, designated by numbers. The data are given in compact form below, the letter S standing for solid silver perchlorate,  $S_c$  for the solid compound AgClO<sub>4</sub>.  $C_7H_8$ ,  $S_H$  for the solid hydrate AgClO<sub>4</sub>. H<sub>2</sub>O, T for solid toluene, W for ice, and  $L_1$ ,  $L_2$  and  $L_3$  for the three liquid phases,  $L_3$  being the phase composed chiefly of toluene,  $L_2$  the phase rich in water, and  $L_1$  the phase intermediate in composition. The lowest quintuple point, A, was not determined by experiment, but is assumed to be practically coincident with the freezing point of toluene, since both salt and water have a negligible solubility in toluene at low temperatures. With the temperature of the quintuple points is given in each instance the phase reaction which occurs (vapor phase being omitted from consideration), written so that the addition of heat is represented by the change from left to right and vice versa; the four 4-phase equilibria originating at each quintuple point are given directly following it, the analyses referring to the liquid phase or phases.

<sup>9</sup> Ref. 2, p. 1187.

<sup>10</sup> Schreinemakers, "Die Heterogenen Gleichgewichte," Roozeboom, Braunschweig, **1911**, vol. 3, pt. 2, p. 34.

<sup>11</sup> Ref. 10, p. 16.

### TABLE VI

# Equilibria in the Ternary System

|                                                                                                    | Quintuple                                                                                                                                                                                                                                                                                                                                                         | Point A. Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (94°). S <sub>o</sub> -                                   | $+ T + W \rightleftharpoons L$                                                                                                                                                                                    | 3 .                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equil. 5.                                                                                          | $S_{\circ} + T + W$                                                                                                                                                                                                                                                                                                                                               | . Exists below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94°. No li                                                | iquids present.                                                                                                                                                                                                   | Not studied.                                                                                                                                                             |
| Equil. 2.                                                                                          | $W+T+L_3$ . 1                                                                                                                                                                                                                                                                                                                                                     | Exists from —94'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ° to binary eute                                          | ectic for W + T                                                                                                                                                                                                   | . Not studied.                                                                                                                                                           |
| Equil. 3.                                                                                          | $S_c + W + L_3$ .                                                                                                                                                                                                                                                                                                                                                 | Exists from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -94° to —33.5                                             | °. (Quintuple                                                                                                                                                                                                     | Point C.)                                                                                                                                                                |
|                                                                                                    | Temp., ° C.                                                                                                                                                                                                                                                                                                                                                       | S, %<br>by wt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T, %<br>by wt.                                            | W, %<br>by wt.                                                                                                                                                                                                    | Density                                                                                                                                                                  |
| Α                                                                                                  | (-94)                                                                                                                                                                                                                                                                                                                                                             | (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.00                                                    | 0.00                                                                                                                                                                                                              |                                                                                                                                                                          |
| С                                                                                                  | -33.5                                                                                                                                                                                                                                                                                                                                                             | .73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (99.26)                                                   | ( .01)                                                                                                                                                                                                            | 0.894                                                                                                                                                                    |
| Equil. 4.                                                                                          | $S_c + T + L_3$                                                                                                                                                                                                                                                                                                                                                   | Exists from –<br>studie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | —94° to binar<br>d.                                       | y eutectic for                                                                                                                                                                                                    | $S_{\bullet} + T$ . Not                                                                                                                                                  |
|                                                                                                    | Quintuple Po                                                                                                                                                                                                                                                                                                                                                      | int B. Temp., -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | —59.8°. S <sub>н</sub> -                                  | + S₀ + W ₽ L                                                                                                                                                                                                      | 2                                                                                                                                                                        |
| Equil. 6.                                                                                          | $S_{\mathbf{H}} + S_{\mathbf{o}} + W.$                                                                                                                                                                                                                                                                                                                            | Exists below -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           | iquids present.                                                                                                                                                                                                   | Not studied.                                                                                                                                                             |
| Equil. 7.                                                                                          | $S_{o} + W + L_{f}$                                                                                                                                                                                                                                                                                                                                               | 2. Exists from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | —59.8° to —                                               | 33.5°. (Quintı                                                                                                                                                                                                    | ple Point C.)                                                                                                                                                            |
| в                                                                                                  | -59.8                                                                                                                                                                                                                                                                                                                                                             | 74.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1,00)                                                    | (24, 19)                                                                                                                                                                                                          | 2,401                                                                                                                                                                    |
| c                                                                                                  | -33.5                                                                                                                                                                                                                                                                                                                                                             | 63.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1.75)                                                    | (35,09)                                                                                                                                                                                                           |                                                                                                                                                                          |
| Equil 9                                                                                            | S- L W L 7                                                                                                                                                                                                                                                                                                                                                        | Evista from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 8° to 58 f                                             | )° (hinami auta                                                                                                                                                                                                   | otio $S_{} \mid W$                                                                                                                                                       |
| 15quii. 0.                                                                                         |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1 00)                                                    |                                                                                                                                                                                                                   | $cuc O_{\underline{H}} + W^{-1}$                                                                                                                                         |
| в                                                                                                  | -59.8                                                                                                                                                                                                                                                                                                                                                             | 74.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1.00)                                                    | (24.19)                                                                                                                                                                                                           | 2.401                                                                                                                                                                    |
|                                                                                                    | 58.2                                                                                                                                                                                                                                                                                                                                                              | 73.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                       | 26.02                                                                                                                                                                                                             | 2.345                                                                                                                                                                    |
| Equil. 9.                                                                                          | $S_{\rm H} + S_{\rm o} + L_{\rm s}$                                                                                                                                                                                                                                                                                                                               | 2. Exists from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-59.8^{\circ}$ to +                                      | 1.25°. (Quintı                                                                                                                                                                                                    | ple Point E.)                                                                                                                                                            |
| в                                                                                                  | -59.8                                                                                                                                                                                                                                                                                                                                                             | 74.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1.00)                                                    | (24.19)                                                                                                                                                                                                           | 2.401                                                                                                                                                                    |
|                                                                                                    | -21.7                                                                                                                                                                                                                                                                                                                                                             | 79.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.11                                                      | 18.66                                                                                                                                                                                                             | 2.579                                                                                                                                                                    |
| E                                                                                                  | + 1.25                                                                                                                                                                                                                                                                                                                                                            | 81.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2.30)                                                    | (16.40)                                                                                                                                                                                                           |                                                                                                                                                                          |
|                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                                                                                   |                                                                                                                                                                          |
|                                                                                                    | Quintuple Po                                                                                                                                                                                                                                                                                                                                                      | int C. Temp.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           | $- W \rightleftharpoons L_3 + L$                                                                                                                                                                                  | 2                                                                                                                                                                        |
| Equil. 3.                                                                                          | Quintuple Po<br>So $+ W + L_{2}$                                                                                                                                                                                                                                                                                                                                  | int C. Temp., -<br>Given above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33.5°. S <sub>c</sub> -                                   | $- W \rightleftharpoons L_3 + L$                                                                                                                                                                                  | 2                                                                                                                                                                        |
| Equil. 3.<br>Equil. 7.                                                                             | Quintuple Po<br>S <sub>0</sub> + W + $L_3$ .<br>S <sub>0</sub> + W + $L_2$ .                                                                                                                                                                                                                                                                                      | int C. Temp.,<br>Given above.<br>Given above.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.5°. S₅ -                                               | $- W \rightleftharpoons L_3 + L$                                                                                                                                                                                  | 2                                                                                                                                                                        |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.                                                               | Quintuple Po<br>$S_0 + W + L_3$ .<br>$S_0 + W + L_2$ .<br>$W + L_3 + L_2$ .                                                                                                                                                                                                                                                                                       | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.5°. S <sub>c</sub> - <br>33.5° to verv                 | $- W \rightleftharpoons L_3 + L$ slightly below                                                                                                                                                                   | <sup>2</sup><br>0° (quadruple                                                                                                                                            |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.                                                               | Quintuple Po<br>$S_0 + W + L_3$ .<br>$S_0 + W + L_2$ .<br>$W + L_3 + L_2$ .                                                                                                                                                                                                                                                                                       | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.5°. S <sub>c</sub> - <br>-33.5° to very<br>for W + T). | $- W \rightleftharpoons L_3 + L$ slightly below                                                                                                                                                                   | 2<br>0° (quadruple                                                                                                                                                       |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C                                                          | Quintuple Po<br>S <sub>0</sub> + W + $L_3$ .<br>S <sub>0</sub> + W + $L_2$ .<br>W + $L_3$ + $L_2$ .                                                                                                                                                                                                                                                               | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>La (63, 16                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           | $- W \rightleftharpoons L_3 + L$<br>slightly below<br>(35.09)                                                                                                                                                     | 2<br>0° (quadruple                                                                                                                                                       |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C                                                          | Quintuple Po<br>S <sub>0</sub> + W + $L_3$ .<br>S <sub>0</sub> + W + $L_2$ .<br>W + $L_3$ + $L_2$ .<br>-33.5                                                                                                                                                                                                                                                      | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2 \begin{cases} 63.16\\ L_3 \end{cases} 0.73$                                                                                                                                                                                                                                                                                                                                                                            |                                                           | - W $\rightleftharpoons L_3 + L$<br>slightly below<br>(35.09)<br>(0.01)                                                                                                                                           | 2<br>0° (quadruple<br><br>.894                                                                                                                                           |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C                                                          | Quintuple Po<br>S <sub>0</sub> + W + $L_3$ .<br>S <sub>0</sub> + W + $L_2$ .<br>W + $L_3$ + $L_2$ .<br>-33.5<br>-18.0                                                                                                                                                                                                                                             | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2 \begin{cases} 63.16\\ L_3 \\ 0.73\\ L_2 \end{cases}$ 49.44                                                                                                                                                                                                                                                                                                                                                             |                                                           | $- W \rightleftharpoons L_3 + L$<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)                                                                                                                                | 2<br>0° (quadruple<br><br>.894<br>1.688                                                                                                                                  |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C                                                          | Quintuple Po<br>$S_0 + W + L_3$ .<br>$S_0 + W + L_2$ .<br>$W + L_3 + L_2$ .<br>-33.5<br>-18.0                                                                                                                                                                                                                                                                     | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2$ $\begin{cases} 63.16\\ L_3\\ 0.73\\ L_2\\ 49.44\\ L_3 \end{cases}$ 0.00                                                                                                                                                                                                                                                                                                                                               |                                                           | - W $\rightleftharpoons L_3 + L$<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)                                                                                                                      | 2<br>0° (quadruple<br><br>.894<br>1.688                                                                                                                                  |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C                                                          | Quintuple Po<br>$S_0 + W + L_3$ .<br>$S_0 + W + L_2$ .<br>$W + L_3 + L_2$ .<br>-33.5<br>-18.0<br>0.0                                                                                                                                                                                                                                                              | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2$ $\begin{cases} 63.16\\ 0.73\\ L_2\\ 49.44\\ L_3\\ 0.00\\ L_2 \end{cases}$ 0.00                                                                                                                                                                                                                                                                                                                                        |                                                           | - W $\rightleftharpoons L_3 + L$<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)<br>100.00                                                                                                            | 2<br>0° (quadruple<br><br>.894<br>1.688<br>                                                                                                                              |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C                                                          | Quintuple Po<br>$S_0 + W + L_3$ .<br>$S_0 + W + L_2$ .<br>$W + L_3 + L_2$ .<br>-33.5<br>-18.0<br>0.0                                                                                                                                                                                                                                                              | $ \begin{array}{cccc} \text{int C. Temp.,} & \\ \text{Given above.} & \\ \text{Given above.} & \\ \text{Exists from } - \\ & & \\ \text{point} & \\ L_2 & \begin{cases} 63.16 \\ 0.73 \\ L_2 \\ 49.44 \\ L_3 \\ 0.00 \\ L_2 \\ 00 \\ L_3 \\ 00 \\ \end{array} \right) $                                                                                                                                                                                                                                |                                                           | - W $\rightleftharpoons L_3 + L$<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)<br>100.00<br>0.00                                                                                                    | 2<br>0° (quadruple<br><br>.894<br>1.688<br><br>                                                                                                                          |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C<br>Equil. 11.                                            | Quintuple Po<br>$S_{0} + W + L_{3}$ .<br>$S_{0} + W + L_{2}$ .<br>$W + L_{3} + L_{2}$ .<br>-33.5<br>-18.0<br>0.0<br>$S_{0} + L_{3} + L_{3}$                                                                                                                                                                                                                       | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2$ $\begin{cases} 63.16\\ 0.73\\ L_2\\ 49.44\\ L_3\\ 0.00\\ L_2\\ .00\\ L_3\\ .00 \end{cases}$<br>2. Exists from                                                                                                                                                                                                                                                                                                         |                                                           | - W ⇒ L <sub>3</sub> + L<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)<br>100.00<br>0.00<br>24.1°. (Quintu                                                                                          | 2<br>0° (quadruple<br><br>.894<br>1.688<br><br><br><br><br>ple Point D.)                                                                                                 |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C<br>Equil. 11.                                            | Quintuple Po<br>$S_0 + W + L_3$ .<br>$S_0 + W + L_2$ .<br>$W + L_3 + L_2$ .<br>-33.5<br>-18.0<br>0.0<br>$S_0 + L_3 + L_2$ .<br>-33.5                                                                                                                                                                                                                              | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2$ $\begin{cases} 63.16\\ 0.73\\ L_2\\ 49.44\\ L_3\\ 0.00\\ L_2\\ .00\\ L_3\\ .00\\ 2. \end{cases}$<br>Exists from<br>$L_2$ $\begin{cases} 63.16\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .0$                                                                                                                                                                                                                         |                                                           | - W ⇒ L <sub>3</sub> + L<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)<br>100.00<br>0.00<br>24.1°. (Quintu<br>(35.09)                                                                               | 2<br>0° (quadruple<br><br>.894<br>1.688<br><br><br><br>ple Point D.)                                                                                                     |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C<br>Equil. 11.<br>C                                       | Quintuple Po<br>$S_0 + W + L_3$ .<br>$S_0 + W + L_2$ .<br>$W + L_3 + L_2$ .<br>-33.5<br>-18.0<br>0.0<br>$S_0 + L_3 + L_3$<br>-33.5                                                                                                                                                                                                                                | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2$ $\begin{cases} 63.16\\ 0.73\\ L_2\\ 49.44\\ L_3\\ 0.00\\ L_2\\ .00\\ L_3\\ .00\\ 2. \end{cases}$<br>Exists from<br>$L_2$ $\begin{cases} 63.16\\ .00\\ 2. \end{cases}$                                                                                                                                                                                                                                                 |                                                           | - W ⇒ L <sub>3</sub> + L<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)<br>100.00<br>0.00<br>24.1°. (Quintu<br>(35.09)<br>(0.01)                                                                     | 2<br>0° (quadruple<br><br>.894<br>1.688<br><br><br><br>ple Point D.)<br><br>0.894                                                                                        |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C<br>Equil. 11.<br>C<br>D                                  | Quintuple Po<br>$S_0 + W + L_3$ .<br>$S_0 + W + L_2$ .<br>$W + L_3 + L_2$ .<br>-33.5<br>-18.0<br>0.0<br>$S_0 + L_3 + L_4$<br>-33.5<br>-24.1                                                                                                                                                                                                                       | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2$ $\begin{cases} 63.16\\ 0.73\\ L_2\\ 49.44\\ L_3\\ 0.00\\ L_2\\ 00\\ L_3\\ 00 \end{cases}$<br>2. Exists from<br>$L_2$ $\begin{cases} 63.16\\ 0.73\\ 0.02\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ $                                                                                                                                                                                                              |                                                           | - W $\rightleftharpoons L_3 + L$<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)<br>100.00<br>0.00<br>24.1°. (Quintu<br>(35.09)<br>(0.01)<br>(27.32)                                                  | 2<br>0° (quadruple<br><br>.894<br>1.688<br><br><br>ple Point D.)<br><br>0.894<br>2.221                                                                                   |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C<br>Equil. 11.<br>C<br>D                                  | Quintuple Po<br>$S_0 + W + L_3$ .<br>$S_0 + W + L_2$ .<br>$W + L_3 + L_2$ .<br>-33.5<br>-18.0<br>0.0<br>$S_0 + L_3 + L_4$<br>-33.5<br>-24.1                                                                                                                                                                                                                       | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2$ $\begin{cases} 63.16\\ 0.73\\ L_2\\ 49.44\\ L_3\\ 0.00\\ L_2\\ 00\\ L_3\\ 00\\ 2. \end{cases}$<br>Exists from<br>$L_2$ $\begin{cases} 63.16\\ L_3\\ 0.73\\ 0.73\\ L_2\\ 70.68\\ L_3\\ 6.01 \end{cases}$                                                                                                                                                                                                               |                                                           | - W $\rightleftharpoons L_3 + L$<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)<br>100.00<br>0.00<br>24.1°. (Quintu<br>(35.09)<br>(0.01)<br>(27.32)<br>(0.03)                                        | 2<br>0° (quadruple<br><br>.894<br>1.688<br><br><br><br>ple Point D.)<br><br>0.894<br>2.221<br>0.920                                                                      |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C<br>Equil. 11.<br>C<br>D                                  | Quintuple Po<br>$S_0 + W + L_3$ .<br>$S_0 + W + L_2$ .<br>$W + L_3 + L_2$ .<br>-33.5<br>-18.0<br>0.0<br>$S_0 + L_3 + L$<br>-33.5<br>-24.1<br>Quintuple D                                                                                                                                                                                                          | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2$ 63.16<br>$L_3$ 0.73<br>$L_2$ 49.44<br>$L_3$ 0.00<br>$L_2$ .00<br>$L_2$ .00<br>$L_2$ 63.16<br>$L_3$ 0.00<br>$L_2$ .00<br>$L_2$ 63.16<br>$L_3$ 63.16<br>$L_3$ 63.16<br>$L_3$ 63.16<br>$L_3$ 63.16<br>$L_3$ 63.16<br>$L_3$ 63.16<br>$L_3$ 63.16<br>$L_3$ 63.16<br>$L_3$ 6.01<br>Point D. Temp                                                                                                                            |                                                           | - W ≈ $L_3 + L$<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)<br>100.00<br>0.00<br>24.1°. (Quintus<br>(35.09)<br>(0.01)<br>(27.32)<br>(0.03)<br>+ $L_3 + L_2 ≈$                                     | 2<br>0° (quadruple<br><br>.894<br>1.688<br><br><br><br><br><br><br>                                                                                                      |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C<br>Equil. 11.<br>C<br>D<br>Equil. 11.                    | Quintuple Po<br>S <sub>0</sub> + W + L <sub>3</sub> .<br>S <sub>0</sub> + W + L <sub>2</sub> .<br>W + L <sub>3</sub> + L <sub>2</sub> .<br>-33.5<br>-18.0<br>0.0<br>S <sub>0</sub> + L <sub>3</sub> + L<br>-33.5<br>-24.1<br>Quintuple D<br>S <sub>0</sub> + L <sub>3</sub> + L <sub>2</sub> .                                                                    | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2$ 63.16<br>$L_3$ 0.73<br>$L_2$ 49.44<br>$L_3$ 0.00<br>$L_2$ .00<br>$L_2$ .00<br>$L_3$ 0.00<br>$L_2$ 63.16<br>$L_3$ 63.16<br>$L_3$ 63.16<br>$L_3$ 6.01<br>Point D. Temp<br>Given above.                                                                                                                                                                                                                                  |                                                           | - W $\rightleftharpoons L_3 + L$<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)<br>100.00<br>0.00<br>24.1°. (Quintu<br>(35.09)<br>(0.01)<br>(27.32)<br>(0.03)<br>+ L_3 + L_2 $\rightleftharpoons$    | 2<br>0° (quadruple<br><br>.894<br>1.688<br><br><br><br><br><br><br>                                                                                                      |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C<br>Equil. 11.<br>C<br>D<br>Equil. 11.<br>Equil. 12.      | Quintuple Po<br>S <sub>0</sub> + W + L <sub>3</sub> .<br>S <sub>0</sub> + W + L <sub>2</sub> .<br>W + L <sub>3</sub> + L <sub>2</sub> .<br>-33.5<br>-18.0<br>0.0<br>S <sub>0</sub> + L <sub>3</sub> + L <sub>3</sub><br>-33.5<br>-24.1<br>Quintuple D<br>S <sub>0</sub> + L <sub>3</sub> + L <sub>2</sub> .<br>S <sub>0</sub> + L <sub>3</sub> + L <sub>2</sub> . | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2$ 63.16<br>$L_3$ 49.44<br>$L_3$ 0.00<br>$L_2$ .00<br>$L_3$ .00<br>2. Exists from<br>$L_2$ 63.16<br>$L_3$ 0.73<br>$L_2$ 63.16<br>$L_3$ 6.01<br>Point D. Temp<br>Given above.<br>Exists from -24                                                                                                                                                                                                                          |                                                           | - W ≈ $L_3 + L$<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)<br>100.00<br>0.00<br>24.1°. (Quintu<br>(35.09)<br>(0.01)<br>(27.32)<br>(0.03)<br>+ $L_3 + L_2 ≈$<br>(consolute temp                   | 2<br>0° (quadruple<br><br>.894<br>1.688<br><br><br>aple Point D.)<br><br>0.894<br>2.221<br>0.920<br>L <sub>1</sub><br>2. for L <sub>8</sub> ₹ L <sub>1</sub> ).          |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C<br>Equil. 11.<br>C<br>D<br>Equil. 11.<br>Equil. 12.<br>D | Quintuple Po<br>S <sub>0</sub> + W + $L_3$ .<br>S <sub>0</sub> + W + $L_2$ .<br>W + $L_3$ + $L_2$ .<br>-33.5<br>-18.0<br>0.0<br>S <sub>0</sub> + $L_3$ + $L_4$<br>-33.5<br>-24.1<br>Quintuple D<br>S <sub>0</sub> + $L_3$ + $L_2$ .<br>S <sub>0</sub> + $L_3$ + $L_2$ .<br>S <sub>0</sub> + $L_3$ + $L_1$ .<br>-24.1                                              | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2$ 63.16<br>$L_3$ 0.73<br>$L_2$ 49.44<br>$L_3$ 0.00<br>$L_2$ .00<br>$L_3$ 0.00<br>$L_2$ 63.16<br>$L_3$ 0.73<br>$L_2$ 63.16<br>$L_3$ 6.01<br>Point D. Temp<br>Given above.<br>Exists from —24<br>$L_1$ (34.54                                                                                                                                                                                                             |                                                           | - W ≈ $L_3 + L$<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)<br>100.00<br>0.00<br>24.1°. (Quintu<br>(35.09)<br>(0.01)<br>(27.32)<br>(0.03)<br>+ $L_3 + L_2 ≈$<br>(consolute temp<br>2.86           | 2<br>0° (quadruple<br><br>.894<br>1.688<br><br><br><br><br><br><br>0.894<br>2.221<br>0.920<br>$L_1$<br>2. for $L_3 \rightleftharpoons L_1$ ).<br>1.254                   |
| Equil. 3.<br>Equil. 7.<br>Equil. 10.<br>C<br>Equil. 11.<br>C<br>D<br>Equil. 11.<br>Equil. 12.<br>D | Quintuple Po<br>S <sub>0</sub> + W + $L_3$ .<br>S <sub>0</sub> + W + $L_2$ .<br>W + $L_3$ + $L_2$ .<br>-33.5<br>-18.0<br>0.0<br>S <sub>0</sub> + $L_3$ + $L_4$<br>-33.5<br>-24.1<br>Quintuple D<br>S <sub>0</sub> + $L_3$ + $L_2$ .<br>S <sub>0</sub> + $L_3$ + $L_2$ .<br>S <sub>0</sub> + $L_3$ + $L_2$ .<br>S <sub>0</sub> + $L_3$ + $L_1$ .<br>-24.1          | int C. Temp.,<br>Given above.<br>Given above.<br>Exists from —<br>point<br>$L_2$ 63.16<br>$L_3$ 49.44<br>$L_3$ 0.00<br>$L_2$ .00<br>$L_3$ .00<br>2. Exists from<br>$L_2$ 63.16<br>$L_3$ 0.73<br>$L_2$ 63.16<br>$L_3$ 0.74<br>$L_3$ 6.01<br>Point D. Temp<br>Given above.<br>Exists from -24<br>$L_1$ 34.54<br>$L_8$ 6.01 |                                                           | - W ≈ $L_3 + L$<br>slightly below<br>(35.09)<br>(0.01)<br>(59.56)<br>(0.00)<br>100.00<br>0.00<br>24.1°. (Quintu<br>(35.09)<br>(0.01)<br>(27.32)<br>(0.03)<br>+ $L_3 + L_2 ≈$<br>(consolute temp<br>2.86<br>(0.03) | 2<br>0° (quadruple<br><br>.894<br>1.688<br><br><br><br>1.688<br><br><br><br>0.894<br>2.221<br>0.920<br>$L_1$<br>0. for $L_3 \rightleftharpoons L_1$ ).<br>1.254<br>0.920 |

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TABLE VI                            | (Continued     | )                                             |                               |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|-----------------------------------------------|-------------------------------|
| Equil. 13  | $S_c + L_2 + L_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . Exists from                       | 24.1° to       | +1.25°. (Quintu                               | ple Point E.)                 |
|            | Temp., ° C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S. %<br>by wt.                      | T. %<br>by wt. | W, %                                          | Density                       |
| D          | -24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $L_1$ { 34.54                       | 62.60          | 2.86                                          | 1.254                         |
| _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $L_{2}$ 70.68                       | (2,00)         | (27, 32)                                      | 2 221                         |
|            | -9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L_1 \left\{ 45.86 \right\}$        | 50.64          | 3.50                                          | 1.458                         |
|            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L_2$ 75.80                         | (2,20)         | (22,00)                                       | 1.100                         |
|            | $\pm 1 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $L_1$ ( 53 08                       | 43 40          | 3.52                                          | 1 597                         |
|            | , 1,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $L_2$ 81.80                         | (2.30)         | (16.40)                                       | 2.529                         |
| Equil. 14. | $L_1 + L_2 + L_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Exists from                         | -24.1° to ab   | ove 90°.                                      |                               |
|            | -24 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7. (34 54                           | 62 60          | 2 86                                          | 1 954                         |
| D          | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L_1$ 70.68                         | (2,00)         | (97, 39)                                      | 9 991                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $L_2$ 10.03                         | (03.06)        | (21.02)                                       | 0.021                         |
|            | 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L_3 = 0.01$                        | (93.90)        | (0.03)                                        | 1 207                         |
|            | $\pm 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $L_1 = 59.55$                       | (9,1)          | 0.70<br>(00.22)                               | 1.307                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $L_2$ 15.57                         | (2.1)          | (22.00)                                       | 2.300                         |
|            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L_3$ ( 1.57<br>7 ( 52 57           | 92.48          | 0.19                                          | 1 740                         |
|            | -+90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L_1$ $\frac{1}{77}$ $\frac{1}{40}$ | 09.00<br>(0 5) | (10)                                          | 1.749                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $L_2$ 77.40                         | (2.5)          | (20.10)                                       | 2,401                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $L_3 \left\{ 5, 14 \right\}$        | 94.72          | 0.14                                          | 0.801                         |
|            | Quintuple Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | int E. Temp.,                       | +1.25°. S.     | $L_2 \rightleftharpoons S_{\mathbb{H}} + L_1$ | L                             |
| Equil. 9.  | $S_{\rm H} + S_{\rm c} + L_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Given above.                        |                |                                               |                               |
| Equil. 13. | $S_{a} + L_{1} + L_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Given above.                        |                |                                               |                               |
| Equil. 15. | $S_{H} + L_{1} + L_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . Exists from 1                     | 25° to 42.2    | °. (Quintuple Po                              | oint G.)                      |
| Ē          | 1 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. 53 08                            | 43 40          | 3 52                                          | 1 597                         |
| 14         | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L_1$ $100.00$                      | (2, 30)        | (16, 40)                                      | 2 529                         |
|            | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L_2$ ( 58 34                       | 37 32          | 4 34                                          | 1 715                         |
|            | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L_1 = 50.04$                       | 9 59           | 12 10                                         | 2 830                         |
| G          | 49 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $L_2 (04.20)$                       | 31 16          | 4 45                                          | 1 795                         |
| 0          | -12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $L_1$ $(04.59)$<br>$L_2$ $(86.79)$  | (2,55)         | (10.66)                                       | 1.100                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                            | (=100)         | (10100)                                       |                               |
| Equil. 16. | $S_{\rm H} + S_{\circ} + L_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Exists from 1.                      | 25° to 15.2°   | . (Quintuple Poi                              | nt F.)                        |
| E          | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53.08                               | 43.40          | 3.52                                          | 1.597                         |
|            | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.43                               | 44.52          | 2.05                                          | 1.596                         |
|            | 15.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.04                               | 43,31          | 1.65                                          | • • •                         |
|            | Quintuple F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oint F. Temp.                       | , 15.2°. Sн    | $+ S_{a} \rightleftharpoons S + L_{1}$        |                               |
| Fauil 16   | $S_{\pm} \pm S_{\pm} \pm I_{\pm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Given above                         |                |                                               |                               |
| Equil 1    | $S_{\rm H} \perp S_{\rm H} \perp S_{\rm$ | Twists from 15 2°                   | to lower ter   | nos No liquid pl                              | hases present.                |
| 17quii, 1. | DH   De   D. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not stu                             | lied           | mpo: xto inquite p                            |                               |
| Equil. 17. | $S_e + L_1 + S.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exists from 15                      | .2° to 22.6°   | (transition point \$                          | $S_c \rightleftharpoons S$ ). |
| F          | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55.04                               | 43.31          | 1.65                                          |                               |
|            | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54.68                               | 43,88          | 1.44                                          | 1.624                         |
|            | 22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | • • •          |                                               |                               |
| Equil. 18. | $S_{\rm H} + S + L_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exists from $15$                    | .2° to 42.2°.  | . (Quintuple Poir                             | nt G.)                        |
| F          | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55.04                               | 43.31          | 1.65                                          |                               |
| -          | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56,66                               | 41.39          | 1.95                                          | 1.674                         |
| G          | 42.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64.39                               | 31.16          | 4,45                                          | 1.872                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                |                                               |                               |

#### TABLE VI (Concluded)

|            | Quintuple Po                  | oint G. Temp.    | ,42.2°. S <sub>H</sub> + | $L_1 \rightleftharpoons S + I$ | 2                                              |
|------------|-------------------------------|------------------|--------------------------|--------------------------------|------------------------------------------------|
| Equil. 15. | $S_{\mathbf{H}} + L_1 + L_2.$ | Given above.     |                          |                                |                                                |
| Equil. 18. | $S_{\rm H} + S + L_1$         | Given above.     |                          |                                |                                                |
| Equil. 19. | $S + L_1 + L_2.$              | Exists from      | 42.2° to 91.75           | (consolute t                   | $emp. L_1 = L_2).$                             |
|            | Temp., ° C.                   | S, %<br>by wt.   | T, %<br>by wt.           | W. %<br>by wt.                 | Density                                        |
| G          | 42.2                          | $L_1 \int 64.39$ | 31.16                    | 4.45                           | 1.872                                          |
|            |                               | $L_2 \ 86.79$    | (2.55)                   | (10.66)                        |                                                |
|            | 75.0                          | $L_1 \int 70.85$ | 24.14                    | 5.01                           | 2.042                                          |
|            |                               | $L_2 \ 87.00$    | 2.71                     | 10.29                          | 2.983                                          |
|            | $91.75 L_1 =$                 | $L_2 83.00$      | 12.89                    | 5.00                           | •••                                            |
| Equil. 20. | $S_{\mathbf{H}} + S + L_2$    | Exists from      | 42.2° to 43.1°           | (transition                    | temp. $S_{\mathbb{H}} \rightleftharpoons S$ ). |
| G          | 42.2                          | 86.79            | 2.55                     | 10.66                          |                                                |
|            | 43.1                          | 86.5             | 0.00                     | 13.5                           | •••                                            |

From the data given above it is easily possible to construct a complete series of diagrams showing all of the phase complexes capable of stable existence between about  $-94^{\circ}$  and  $+91.75^{\circ}$ . The multiplicity of equilibria results from the evolution of the solubility curves for the three solids, S<sub>c</sub>, S<sub>H</sub> and S and the two binodal curves, these being the characteristic parts of the system. Liquid areas appear consecutively at three widely different temperatures and of widely different compositions;  $L_3$ , being substantially liquid toluene, appears at the ternary eutectic, Quintuple Point A (about  $-94^{\circ}$ );  $L_2$ , which is substantially an aqueous solution of silver perchlorate, appears at Quintuple Point B ( $-59.8^{\circ}$ ); L<sub>1</sub>, which is of intermediate composition, appears at Quintuple Point D (-24.1°). The areas for these liquid phases increase with rise of temperature,  $L_3$  and  $L_1$ becoming consolute at  $-15.8^{\circ}$  (Equil. 12) and completing the submerged binodal curve ghi, while  $L_2$  and  $L_1$  do not become consolute until the temperature  $+91.75^{\circ}$  is reached (Equil. 19), at which temperature the larger binodal curve WcdT is completed. The 3-liquid system (Equil. 14) comes into existence at -24.1° (Quintuple Point D) and remains stable up to 90°, which is approximately the boiling point of the system under atmospheric pressure; the fact that the three liquids have up to that temperature shown no marked tendency to reach the same composition makes it probable that they can co-exist up to much higher temperatures. 3-Liquid systems arising from the merging of two binodal curves have, therefore, now been realized in two instances; in the first (silver perchloratebenzene-water)<sup>2</sup> the temperature range is 17°, while in the case reported here the range is something greater than 110°.

## Summary

1. The solubility of silver perchlorate in toluene has been determined from  $-73.5^{\circ}$  to  $+75^{\circ}$ . At room temperature (25°) the solubility is 50.3%. Below 22.6° the solid phase is the compound AgClO<sub>4</sub>.C<sub>7</sub>H<sub>8</sub>.

2. The ternary system, silver perchlorate-toluene-water has been studied from the ternary eutectic at  $-94^{\circ}$  up to  $+91.75^{\circ}$ . There exist seven quintuple points, each of which was determined, and twenty 4-phase equilibria.

3. The system shows, in addition to the solubility curves for the three solid phases (silver perchlorate, its hydrate and its compound with toluene), two binodal curves, one of which is submerged and does not reach any of the two-component axes at any temperature.

4. The intersection of the two binodal curves, at certain points which are not their plait points, gives rise to a 3-liquid system which is stable from  $-24.1^{\circ}$  to above  $+90^{\circ}$ .

NEW YORK, N. Y.

[Contribution from the Departments of Pharmacology and Tropical Medicine, Harvard Medical School]

# THE SULFUR CONTENT OF ARSPHENAMINE AND ITS RELATION TO THE MODE OF SYNTHESIS AND THE TOXICITY. V.<sup>1</sup>

BY W. G. CHRISTIANSEN, A. J. NORTON AND J. B. SHOHAN RECEIVED JANUARY 2, 1925 PUBLISHED NOVEMBER 5, 1925

Previous studies<sup>2</sup> in this Laboratory have shown that when 3-nitro-4hydroxyphenylarsonic acid is reduced to arsphenamine base by means of sodium hydrosulfite as indicated in Reaction 1, the experimental conditions under which the nitro acid is reduced to the amino acid are of great importance in determining the toxicity and sulfur content of the reaction product.



Evidence has also been reported<sup>3</sup> of the formation of a very soluble byproduct during the reduction of the nitro group; it was hypothetically suggested<sup>4</sup> that sulfamic acids are formed and that the latter give rise to the sulfo-arseno compounds which are present as impurities in the arsphenamine obtained when the nitro group is reduced under the least favorable

<sup>1</sup> This is a continuation of an investigation which was commenced under a grant from the United States Interdepartmental Social Hygiene Board; the work has been under the general direction of Dr. Reid Hunt.

<sup>2</sup> Christiansen, THIS JOURNAL, (a) **43**, 2202 (1921); (b) **44**, 847 (c) 854 (d) 2334 (1922); (e) **45**, 1316 (f) 1807 (1923).

<sup>3</sup> Ref. 2 a, p. 2206.

<sup>4</sup> Ref. 2 d, p. 2338.